Miami Living Magazine

Beauty Innovation

Miami Living Magazine features the best Miami has to offer. Click on any magazine below and enjoy. You can download our free app on iTunes. Ideal for iPad and iPhone users.

Issue link: https://digital.miamilivingmagazine.com/i/1436805

Contents of this Issue

Navigation

Page 221 of 277

and economic terms. The proof is in the pudding: The market, which represented $1.4 billion worldwide in 2020, is expected to grow to $4.4 billion in 2028. For the cosmetics industry, which often relies on “artificial” skin to test products, this cutting-edge technology is of particular interest. 3-D printing skin has two primary objectives: the first is to gain a more precise understanding of human skin and its biological mechanisms, and the second, for the cosmetics world, is to accelerate the production of skin samples in order to test new products. Christophe Masson is the CEO of Cosmetic Valley, a high-technology cluster specializing in the production of consumer goods in the perfumes and industry of perfumes and cosmetics. “The rise of bioprinting is part of several phenomena,” says Masson. “It may not be immediately obvious, but France is the leading exporter of cosmetics in the world. We hold this position because we continue to innovate skincare products that emphasize safety, performance and durability. On an industrial and more general level, the principle of 3-D printing is at the heart of what we call new “rapidly prototyping technology.” In essence, 3-D printing allows brands to adapt their production processes in order to create products faster while allowing for greater flexibility and customization. Masson says, “This is great because we are entering an era where cosmetics needs to be adaptable to individual needs. 3-D printing is a remarkable technology because it allows us to keep up with this evolution.” Luckily for French cosmetology brands, the leaders in skin bioprinting are also French. Among them are two start-ups that began in 2014: Poietis, founded by Fabien Guillemot, a former researcher at Inserm, and LabSkin Creations, which is based in Lyon and was built by Amélie Thépot, a doctor in cell biology. The way 3-D bioprinting works is similar to the way the printers we have at home or in our offices function, except that the ink used is made of bio-materials and living cells. Layer by layer, according to the principle of additive manufacturing, the printer assembles biological tissues, which can be bone, cartilage or skin. For the latter, it takes about three weeks for the material to really take shape. Because of the extensive process, some scientists even go so far as to refer to it as 4-D. Fabien Guillemot, the founder of Poietis, says, “In 3-D printing skin, we have already introduced a fourth dimension, which is related to the time needed to create skin. After printing the successive layers, the artificial skin must to go through a stage of cell maturation, or “cell culture.” During this process, the cells will interact with the bio-materials and their environment to begin multiplying.” Of the world’s rising technologies and innovations, bioprinting artificial human skin holds a special place. Used for scientific research, knowledge development and testing, artificial skin is at the heart of many controversies related to ethics and product safety. In this regard, Europe has some of the strictest regulations in the world. But even before the bloc banned animal testing in March 2013, the cosmetics industry was already looking for alternative evaluation protocols for its products. By forming

Articles in this issue

Archives of this issue

view archives of Miami Living Magazine - Beauty Innovation