Miami Living Magazine features the best Miami has to offer. Click on any magazine below and enjoy. You can download our free app on iTunes. Ideal for iPad and iPhone users.
Issue link: https://digital.miamilivingmagazine.com/i/1381484
other strains circulating in the population. Researchers know how to elicit antibodies that will neutralize one strain, but not antibodies with an ability to protect against the thousands and thousands of strains circulating in the population. That’s a major problem for vaccine development efforts. HIV is continually evolving within a single infected individual to stay one step ahead of the immune responses. The host elicits a particular immune response that attacks the virus. This puts selective pressure on the virus, and through natural selection a mutated virus variant appears that is no longer recognized by the individual’s immune system. The result is continuous unrelenting viral replication. So, should we researchers give up? No, we shouldn’t. One approach researchers are trying in animal models in a couple of laboratories is to use herpes viruses as vectors to deliver the AIDS virus proteins. The herpes virus family is of the “persistent” category. Once infected with a herpes virus, you are infected for life. And immune responses persist not just as memory but in a continually active fashion. Success of this approach, however, will still depend on figuring out how to elicit the breadth of immune responses that will allow coverage against the vast complexity of HIV sequences circulating in the population. Another approach is to go after protective immunity from a different angle. Although the vast majority of HIV-infected individuals make antibodies with weak, strain-specific neutralizing activity, some rare individuals do make antibodies with potent neutralizing activity against a broad range of HIV isolates. These antibodies are rare and highly unusual, but we scientists do have them in our possession. Also, scientists have recently figured out a way to achieve protective levels of these antibodies for life from a single administration. For life! This delivery depends on a viral vector, a vector called adeno-associated virus. When the vector is administered to muscle, muscle cells become factories that continuously produce the potent broadly neutralizing antibodies. Researchers have recently documented continuous production for six and a half years in a monkey. We are making progress. We must not give up.